Towers | Poles | Mounts | Masts | Hardware | Guy | Cable | Wire | Carts | Racks | Tools
Your Cart
ProductQtyPrice
100 FT RG11...1$55.00
Goods Total1$55.00
View Cart Check out

Sort by:

55G Bracketed

ROHN 55G 40 Foot Bracketed Tower 55BRKT040

ROHN 55G 40 Foot Bracketed Tower R-55BRKT040
Price$3,310.00
Manufacturer Code: 55BRKT040
Average Rating: 5
Grounding:
Qty:
Add to Cart Read More

ROHN 55G 50 Foot Bracketed Tower 55BRKT050

ROHN 55G 50 Foot Bracketed Tower R-55BRKT050
Price$3,765.00
Manufacturer Code: 55BRKT050
Average Rating: 5
Grounding:
Qty:
Add to Cart Read More

ROHN 55G 60 Foot Bracketed Tower 55BRKT060

ROHN 45G 60 Foot Bracketed Tower R-45BRKT060
Price$4,215.00
Manufacturer Code: 55BRKT060
Average Rating: 5
Grounding:
Qty:
Add to Cart Read More

ROHN 55G 70 Foot Bracketed Tower 55BRKT070

ROHN 55G 70 Foot Bracketed Tower R-55BRKT070
Price$4,670.00
Manufacturer Code: 55BRKT070
Average Rating: 5
Grounding:
Qty:
Add to Cart Read More

ROHN 55G 80 Foot Bracketed Tower 55BRKT080

ROHN 55G 80 Foot Bracketed Tower R-55BRKT080
Price$5,120.00
Manufacturer Code: 55BRKT080
Average Rating: 5
Grounding:
Qty:
Add to Cart Read More

ROHN 55G 90 Foot Bracketed Tower 55BRKT090

ROHN 55G 90 Foot Bracketed Tower R-55BRKT090
Price$5,575.00
Manufacturer Code: 55BRKT090
Average Rating: 5
Grounding:
Qty:
Add to Cart Read More

ROHN 55G 100 Foot Bracketed Tower 55BRKT100

ROHN 55G 100 Foot Bracketed Tower R-55BRKT100
Price$6,165.00
Manufacturer Code: 55BRKT100
Average Rating: 5
Grounding:
Qty:
Add to Cart Read More

The 55G Bracketed Tower can be installed adjacent to buildings using a bracket to secure the tower in one or two locations along the height of the structure.

Wind Loading, Antenna Loading and Wind Survivability ratings vs. Height Documentation Provided by ROHN is available here as a Resource, but is by no means complete by itself or a susbstitution for Engineering Conducted Specific to your Application. Contact Us with any Questions you may have regarding Use prior to Purchase. All Information regarding the ROHN 55G Tower line, Parts and Accessories is as accurate and complete as we can possibly provide given that this Resource Offering is subject to change without Notice and is beyond Our Control. 

 


 

ROHN 55G Bracketed Tower

DESIGN NOTES:
1.
Tower designs are in accordance with ANSI/EIA-222-F.
2. All towers must have "fixed" bases. Pinned bases may not be used.
3. Designs assume transmission lines symmetrically placed as follows:
55G Tower - Two 7/8" Lines on each face ( Total =6)
4. Antennas and mounts assumed symmetrically placed at tower apex.
5. Allowable antenna areas assume all round antenna members.
6. Allowable flat-plate antenna areas, based on EIA RS-222-C, may be obtained by multiplying areas shown by 0.6.
7. All brackets are to be ROHN (P/N HBUTVRO)
8. The interface of tower brackets to supporting structure is to be designed by others and must support a minimum horizontal force of 3200 lbs.

FEATURES:
o
Completely hot-dip galvanized after fabrication to provide absolute corrosion protection.
o Cross bracing is formed by a continuous solid rod bracing in a zig-zag pattern for strength.
o Pre-engineered loading charts meet varying individual specs and site conditions.
o Typical uses include small dishes, broadband, security and two-way communication.


ROHN 25G Bracketed



ROHN G-Series Bracketed Towers


Get Adobe Reader



This ROHN G-Series Bracketed Towers Guide will answer many questions you may have on this Product Line.


GUIDELINES FOR THE PREPARATION OF A GEOTECHNICAL REPORT

 

I. PURPOSE AND INTENT

a) The intended purpose of these guidelines is to assist the customer and/or owner to retain the services of a Geotechnical Engineer.

b) It is not ROHN´s purpose or intent to supercede the Geotechnical Engineer´s knowledge, judgement and/or experience. It is the Geotechnical Engineer´s responsibility to add or delete from these items, based on local site conditions and other factors.

c) Additional information is provided in ANSI/TIA-222-G Annex G "Geotechnical Investigations".

II. DISCLAIMER

a) ROHN will not accept any liability, either expressed or implied, for the use of, and omissions in, these guidelines.

III. EXPLORATORY BORINGS

a) Borings should be taken at tower legs for self-supporting towers and at the base and anchor points for guyed towers. For small self-supporting towers, two borings may suffice. For large self-supporting towers, one boring should be taken at each tower leg. A "small" self-supporting tower is assumed to have a face width less than 20 feet and a compression load less than 50 kips per leg. For pole structures, one boring may suffice.

b) The minimum boring depth should be 30 feet for pole structures, self-supporting towers and guyed tower bases. For guyed tower anchors, the minimum depth should be 15 feet. The actual depth of boring must be determined by the Geotechnical Engineer based on reactions, soil conditions and the type of foundation recommended.

c) If borings cannot be advanced to the desired depth, rock corings should be taken. Rock Quality Designation (RQD) values and compressive strengths should be determined.

IV. GEOTECHNICAL REPORT

a) The following properties, for each soil layer encountered, should be determined by field or laboratory testing and summarized in the geotechnical report:

1. Soil classification and elevations
2. Standard penetration values
3. Unconfined compression strength
4. Angle of internal friction
5. Cohesion
6. "In-Situ" soil density and moisture content
7. Rock quality designation (RQD) and percent rock sample recovered
8. Other properties unique to site conditions

b) The following items should be discussed in the geotechnical report:

1. Geological description of site
2. Observed and expected ground water conditions
3. Expected frost penetration depth
4. Corrosion potential of soil and corrosion protection recommendations
5. Site access and potential construction difficulties
6. Dewatering or site drainage requirements
7. Backfill material recommendations
8. Settlement considerations
9. Additional information to aid foundation designer
10. Recommended types of foundations
11. Design parameters for uplift, download and lateral load
12. Factor of safety considered when allowable vs. ultimate design parameters are provided
13. Recommended construction techniques and inspections