ROHN 65G Complete 150 Foot 110 MPH (REV. G) Guyed Tower
This Product Order Supplies the Following BOM (Less Foundation and Installation) in accordance for Use as a 150 Foot ROHN 65G Tower with EPA's (Effective Projected Area) Ratings for 110 MPH (REV. G). Refer to Larger Image for EPA Information.
QUANTITY | PART NUMBER | DESCRIPTION |
---|---|---|
7 | 6520G | 20' Tower Section |
7 | 65JBK | Bolt Kit for 65G Tower Section |
1 | APL4HA | Leg Mounted Beacon Plate |
1 | 65TGH | Tapered Base Section |
3 | GA65GD | Guy Wire Bracket |
600 FT | 3/8" Guy Wire (aka ROHN 142261) | |
500 FT | 1/4" Guy Wire | |
425 FT | 3/16" Guy Wire | |
9 | PLP-115 | Yellow Plastic Guard for Guy Wire |
6 | BG2147 | 3/8" Big Grip Pre-Formed Deadends |
6 | BG2144 | 1/4" Big Grip Pre-Formed Deadends |
6 | BG2142 | 3/16" Big Grip Pre-Formed Deadends |
6 | 1/2THH | 1/2" Thimble |
6 | 3/8THH | 3/8" Thimble |
6 | 5/16THH | 5/16" Thimble |
9 | 5/8TBE&J | 5/8" x 12" Turnbuckle - Eye-to-Jaw |
3 | TBSAFETY | Turnbuckle Safety Wire and Clamps Kit |
3 | GAC5655TOP | Anchor Rod with 5 Hole Equalizer Plate |
1 | AGK1GGX |
Anchor Rod Ground Kit This Kit Includes: (3) 15' of 7/16 EIP IWRC RRL (3) 5/8" x 10' Galvanized Ground Rod (aka 6260) (3) 3/4" Clamp No. 8034 WB (aka 340016) (3) CPC.5/.75 - Anchor Rod Clamp |
3 | BGK2GGX |
Tower Base Section Grounding Kit This Kit Includes: (1) 15' of 7/16 EIP IWRC RRL (1) 5/8" x 10' Copper Clad Ground Rod (1) 3/4" Clamp Ground Rod Clamp (1) CPC1.5/.2 - Anchor Rod Clamp |
6 | CPC1/1.25 | Anchor Rod Clamp |
1 | 15/16x16PP | Pier Pin Insert for 65G Tapered Base |
1 | ASSEMBLY GUIDE |
This 65G Tower is to be used in a Guyed Configuration according to Specifications in the ROHN Catalog. As a Guyed Structure, a 110 MPH rated Tower can rise to a maximum of 340 feet. Refer to ROHN catalog for Foundation and Grounding Detail Information. Consult ROHN Catalog Links at Footer Section at Bottom of Page for more ROHN 65G Tower Details.
TIA/EIA-222-G, the national standard´s seventh revision for Steel Antenna Towers and Antenna Supporting Structures, became effective January 1, 2006. REV. F wind loading is calculated according to the Fastest-Mile Wind Speed for the structure´s location as recorded from the 1-in-50-year wind speeds encountered at that location that were constant over a distance of one mile. REV. G requires that wind loading be calculated according to the three-second-gust wind speed, allowing the tower´s design to accommodate instantaneous loads. Loadings will be determined by specific local county criteria from wind, ice, and seismic maps.
Tower and foundation installations should be performed by qualified and experienced personnel using construction drawings. This document is to serve as a guide for sizing and buying the 65G tower. All types of antenna installations should be thoroughly inspected by qualified personnel and re-marked with appropriate danger and anti-climb labels at least twice a year to ensure safety and proper performance.
Wind Loading, Antenna Loading and Wind Survivability ratings vs. Height Documentation Provided by ROHN is available here as a Resource, but is by no means complete by itself or a susbstitution for Engineering Conducted Specific to your Application. Contact Us with any Questions you may have regarding Use prior to Purchase. All Information regarding the ROHN 65G Tower line, Parts and Accessories is as accurate and complete as we can possibly provide given that this Resource Offering is subject to change without Notice and is beyond Our Control.
DESIGN NOTES:
1. Tower designs are in accordance with ANSI/TIA-222-F-1996 and ANSI/TIA-222-G-2005, Class I Structures, Topographical Category 1.
2. Design assumes towers are installed on level ground. Lower EPA values will apply for roof mounted towers or for sites located on unusual terrain.
3. Designs assume two 7/8" diameter lines on each tower face.
4. Anchor radius is from tower base to intersection of anchor rod with ground.
5. Tower designs and guy chord lengths shown are based on level ground. Initial tensions for guys in pounds at 60º Fahrenheit are shown in ( ).
6. Antenna and mounts are assumed symmetrically placed at the tower top.
PARTS LIST NOTES:
1. Items listed are required for complete (ground) guyed towers.
2. Base and anchor foundations listed refer to standard foundation designations.
3. Guys provided with each standard tower are based on level ground conditions with an additional 6% length.
4. Rev G anchor grounding (AGK1GGX) and base grounding (BGK3GGX) are included with the tower material.
5. Assembly Drawings and a safety package (P/N: ACWS) are included with each tower.
6. Parts lists are subject to change based on availability or revised design criteria.
This Buyers Guide will answer many questions you may have on this Product Line.
ROHN Tower series is the Workhorse of America's Large and Small Communications needs; from Governments, Institutions, Space Program, Olympics, TV AM FM Broadcast, Terrestrial Microwave to Business-Band Radio, HAM Radio Operators, to Off-Air Antenna TV and DTV Reception in Fringe areas outside the Surburban Broadcast Area. ROHN fabricates their towers from the highest quality steel. They maintain mill certification on the raw materials they receive to verify the material composition of each structural member. With a focus on quality, their fabrication facility has been awarded Certification by the American Institute of Steel Construction and the Canadian Welding Bureau. They have also been approved by the City of Los Angeles, CA and Clark County, NV as a certified fabricator. They are confident that their facility and staff can produce superior grade towers and poles that will meet your standards and weather the test of time. ROHN Towers, Accessories and their Construction/Assembly Assistance are also available via 3StarInc.com... Call 877-660-0974 at anytime for assistance.
GUIDELINES FOR THE PREPARATION OF A GEOTECHNICAL REPORT
I. PURPOSE AND INTENT
a) The intended purpose of these guidelines is to assist the customer and/or owner to retain the services of a Geotechnical Engineer.
b) It is not ROHN´s purpose or intent to supercede the Geotechnical Engineer´s knowledge, judgement and/or experience. It is the Geotechnical Engineer´s responsibility to add or delete from these items, based on local site conditions and other factors.
c) Additional information is provided in ANSI/TIA-222-G Annex G "Geotechnical Investigations".
II. DISCLAIMER
a) ROHN will not accept any liability, either expressed or implied, for the use of, and omissions in, these guidelines.
III. EXPLORATORY BORINGS
a) Borings should be taken at tower legs for self-supporting towers and at the base and anchor points for guyed towers. For small self-supporting towers, two borings may suffice. For large self-supporting towers, one boring should be taken at each tower leg. A "small" self-supporting tower is assumed to have a face width less than 20 feet and a compression load less than 50 kips per leg. For pole structures, one boring may suffice.
b) The minimum boring depth should be 30 feet for pole structures, self-supporting towers and guyed tower bases. For guyed tower anchors, the minimum depth should be 15 feet. The actual depth of boring must be determined by the Geotechnical Engineer based on reactions, soil conditions and the type of foundation recommended.
c) If borings cannot be advanced to the desired depth, rock corings should be taken. Rock Quality Designation (RQD) values and compressive strengths should be determined.
IV. GEOTECHNICAL REPORT
a) The following properties, for each soil layer encountered, should be determined by field or laboratory testing and summarized in the geotechnical report:
1. Soil classification and elevations
2. Standard penetration values
3. Unconfined compression strength
4. Angle of internal friction
5. Cohesion
6. "In-Situ" soil density and moisture content
7. Rock quality designation (RQD) and percent rock sample recovered
8. Other properties unique to site conditions
b) The following items should be discussed in the geotechnical report:
1. Geological description of site
2. Observed and expected ground water conditions
3. Expected frost penetration depth
4. Corrosion potential of soil and corrosion protection recommendations
5. Site access and potential construction difficulties
6. Dewatering or site drainage requirements
7. Backfill material recommendations
8. Settlement considerations
9. Additional information to aid foundation designer
10. Recommended types of foundations
11. Design parameters for uplift, download and lateral load
12. Factor of safety considered when allowable vs. ultimate design parameters are provided
13. Recommended construction techniques and inspections